Amino-acid site variability among natural and designed proteins
نویسندگان
چکیده
Computational protein design attempts to create protein sequences that fold stably into pre-specified structures. Here we compare alignments of designed proteins to alignments of natural proteins and assess how closely designed sequences recapitulate patterns of sequence variation found in natural protein sequences. We design proteins using RosettaDesign, and we evaluate both fixed-backbone designs and variable-backbone designs with different amounts of backbone flexibility. We find that proteins designed with a fixed backbone tend to underestimate the amount of site variability observed in natural proteins while proteins designed with an intermediate amount of backbone flexibility result in more realistic site variability. Further, the correlation between solvent exposure and site variability in designed proteins is lower than that in natural proteins. This finding suggests that site variability is too uniform across different solvent exposure states (i.e., buried residues are too variable or exposed residues too conserved). When comparing the amino acid frequencies in the designed proteins with those in natural proteins we find that in the designed proteins hydrophobic residues are underrepresented in the core. From these results we conclude that intermediate backbone flexibility during design results in more accurate protein design and that either scoring functions or backbone sampling methods require further improvement to accurately replicate structural constraints on site variability.
منابع مشابه
بررسی تمایل مجاورت اسیدهای آمینه با یکدیگر در مارپیچهای آلفا
In order to study the tendency of amino acid neighbors in helical structures, proteins with known structures were carefully analyzed. The studied helical positions: N , Ncap, N1, N2, N3, N4, M, C4, C3, C2, C1, Ccap, C and their doublet counterparts: N Ncap, NcapN1, N1N2, N2N3, N3N4, M1M2, M2M3, C4C3, C3C2, C2C1, C1Ccap, CcapC were carefully analyzed. The propensity for all amino acids i...
متن کاملThermodynamic-Biochemical Study of Complexes of Intermediate Elements with α-Amino Acids in Some Proteins with Active Site
In this paper, the quantum chemistry calculations related to the structural parameter of the chromite and molybdate anions and the complexes obtained from them with the glycine and alanine amino acids were performed. The calculations were carried out using HF and DFT methods and in the base series 6-31G *. Thermodynamic studies related to the formation of complexes have been considered and thei...
متن کاملPrediction of 3D protein Structure based on Mutation of AKAP3 and PLOD3 Gene in Case of Non-Obstructive Azoospermia
Background: The present study has been designed with the aim of evaluating A-kinase anchoring proteins 3 (AKAP3)and Procollagen-Lysine, 2-Oxoglutarate 5-Dioxygenase 3 (PLOD3) gene mutations and prediction of 3D proteinstructure for ligand binding activity in the cases of non-obstructive azoospermic male.Materials and Methods: Clinically diagnosed cases of non-obstructive azoos...
متن کاملChemical mutagenesis: selective post-expression interconversion of protein amino acid residues.
The ability to alter protein structure by site-directed mutagenesis has revolutionized biochemical research. Controlled mutations at the DNA level, before protein translation, are now routine. These techniques allow specific, high fidelity interconversion largely between 20 natural, proteinogenic amino acids. Nonetheless, there is a need to incorporate other amino acids, both natural and unnatu...
متن کاملBeyond thermodynamic constraints: Evolutionary history shapes protein sequence variation
Biological evolution generates a surprising amount of site-specific variability in protein sequences. Yet attempts at modeling this process have been only moderately successful, and current models based on protein structural metrics explain, at best, 60% of the observed variation. Surprisingly, simple measures of protein structure, such as solvent accessibility, are often better predictors of s...
متن کامل